ЭЛЕМЕНТАРНЫЕ ПРОЦЕССЫ РОСТА КРИСТАЛЛОВ И ВОЗМОЖНОСТИ АТОМНО-СИЛОВОЙ МИКРОСКОПИИ

Л.Н. Рашкович, Е.В. Петрова

Физический факультет МГУ Кафедра физики полимеров и кристаллов <u>rashk@polly.phys.msu.ru</u>

Поверхность атомно-гладкой грани

Основные элементарные параметры кинетики роста: Плотность изломов ρ, штук/см Частота отрыва частиц от излома w_{_}, сек⁻¹

Спиральный рост моноклинного лизоцима (6.3 с между кадрами)

500 нм

Пространственные флуктуации положения ступени на грани (101) моноклинного лизоцима

$W = \langle [X(Y) - X(Y + \Delta Y)]^2 \rangle = \Delta Y \cdot a^2 \rho$

 $\chi = a^6 \rho W_{-}$

 $X_{k}(0) - X_{i}(t) = [X_{k}(0) - X_{i}(0)] + [X_{i}(0) - X_{i}(t)]$ $< [X(t) - X(t + \Delta t)]^2 > = (\chi t)^{1/2}$, $<[X_k(0) - X_i(t)]^2 > = <[X_k(0) - X_i(0)]^2 > + <[X_i(0) - X_i(t)]^2 >$ $<[X(Y) - X(Y + \Delta Y)]^2 > = \Delta Y \cdot a^2 \rho - \Delta Y^{1/2} [\chi \cdot S/LH]^{1/2}$...

Временные флуктуации положения ступени

 $W^2 = \langle [x(t + \Delta t) - x(t)]^2 \rangle$

Флуктуации растут по закону $W^2 = (\chi \Delta t)^{1/2}$, где $\chi = (2/\pi)a^6\rho^2 w_{-} = 36$ нм⁴/с При a = 6нм, $w_{-}\rho^2 = 0.00121$ нм⁻²с⁻¹, если $\rho = 0.003$ nm⁻¹, то $w_{-} = 400$ шт/с

Fluctuation of step movement

Изрезанность степеней кристаллов высокомолекулярных и низкомолекулярных

KDP

Изрезанность ступеней под действием измерительной иглы

Любое ACM изображение представляет собой квадратную сетку размером SxS, каждый элемент (квадратик) которой (пиксель) характеризуется своей интенсивностью.

Прямая ступень (без изломов) под углом ϕ к вертикальной оси сканирования .

Изображение такой ступени будет иметь вид ломанной линии, у которой длина прямых вертикальных участков равна 1/tgφ (сканов), а число точек излома равно Stgφ., т.е. тем больше, чем больше S и φ.

Движущаяся прямая ступень (без изломов).

Скорость ступени вдоль направления горизонтального сканирования V = Vcosφ, поэтому за время Т при сканировании сверху вниз нижний конец ступени переместится на VT = VScosφ/H и показанная на рисунке прямая расположится под углом φ* к вертикали:

 $tg\phi^* = [VS\cos\phi/H + Stg\phi]/S = tg\phi + V\cos\phi/H.$

Теперь длина прямых вертикальных участков еще уменьшится и будет равна 1/ tgφ*, а число точек излома станет больше и составит Stgφ* = S[tgφ + Vcosφ/H].

Формирование нового сегмента дислокационной спирали

Image data: Deflection

Частота сканирования 20.3 Гц 2 скана сканируются с частотой 10,15 с⁻¹

Винтовая дислокация

Morphology of the (010) growing surface

Dislocation hillocks on the (010) face of a KAP crystal: (a) double spiral and (b) Frank-Read source.

Поверхность (101) моноклинного кристалла лизоцима с высоким разрешением

Краевая дислокация.

Высота ступени - 2,39 нм.